在这项工作中,我们提出了一个完全可区分的图形神经网络(GNN)的架构,用于用于通道解码和展示各种编码方案的竞争性解码性能,例如低密度奇偶校验检查(LDPC)和BCH代码。这个想法是让神经网络(NN)通过给定图的通用消息传递算法,该算法通过用可训练的函数替换节点和边缘消息更新来代表正向误差校正(FEC)代码结构。与许多其他基于深度学习的解码方法相反,提出的解决方案享有对任意块长度的可扩展性,并且训练不受维数的诅咒的限制。我们在常规渠道解码中对最新的解码以及最近的基于深度学习的结果基准了我们提出的解码器。对于(63,45)BCH代码,我们的解决方案优于加权信念传播(BP)的解码约0.4 dB,而解码迭代率明显较小,甚至对于5G NR LDPC代码,我们观察到与常规BP解码相比,我们观察到竞争性能。对于BCH代码,所得的GNN解码器只能以9640个权重进行完全参数。
translated by 谷歌翻译
我们提出了一种基于神经网络(NN)的算法,用于用于窄带物理随机访问通道(NB-iot)的窄带物理随机通道(NBRACH)的设备检测和到达时间(TOA)和载体频率偏移(CFO)估计(nprach) 。引入的NN体系结构利用了剩余的卷积网络以及对5G新无线电(5G NR)规格的序言结构的了解。第三代合作伙伴项目(3GPP)城市微电池(UMI)频道模型的基准测试,其随机用户与最先进的基线相对于最先进的基线表明,该提出的方法可在虚假的负率(FNR)中最多8 dB增益(FNR)以及假阳性率(FPR)和TOA和CFO估计精度的显着增长。此外,我们的模拟表明,所提出的算法可以在广泛的通道条件,CFO和传输概率上获得收益。引入的同步方法在基站(BS)运行,因此在用户设备上没有引入其他复杂性。它可能通过降低序列长度或发射功率来延长电池寿命。我们的代码可在以下网址提供:https://github.com/nvlabs/nprach_synch/。
translated by 谷歌翻译